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Abstract: In the asymmetric oxidation of methyl p-iolyl sulfide, (2a), and benzyi phenyl suifide (2b)
by TBHP, mediated by a titanium complex with enantiopure (R, R)-p,p’-disubstituted-1,2-
diphenylethane-1,2-diols, both the unsubstituted diol (R,R)-1a and the p-OMe substituted diol (R, R)-
1b lead to sulfoxides of S configuration, with ee up to 99%. On the contrary the p-CF; substituted
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is observed. © 1998 Elsevier Science Ltd. All rights reserved.

The introduction of fluorine atoms into chiral organic compounds leads to new substances often endowed
with unique biological or physical properties, therefore enantiopure organofluorine compounds are acquiring

particular interest in biorganic' and material chemistry.® Fluorine atoms can induce strong electronic
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perturbation'“® and they are able to coordinate metal atoms more strongly than oxygen.3 The influence of
fluorine substitution is known also in asymmetric synthesis* and recently, employing oppositely configurated
3,4-difluoro and 3,4-dihydroxypyrrolidines® as Ti-ligands in the Sharpless asymmetric epoxidation, it was
observed that the former affords higher ee than the latter and induces opposite chirality thus demonstrating
that “the modes of binding of the hydroxy and fluoro catalyst had important features in common”. Prompted

by this novel and important report, we show herein that the introduction of fluorine substituents on a chiral
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configuration of the ligand is the same. We have recently set up a new method7 (Scheme) for the asymmetric

oxidation® of aryl sulfides by TBHP, based on a catalytic precursor formed in situ by reacting (R,R)-1,2-

obtained in 60-80% chemical yield with ee up to 99%.
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nantiopure 1,2-diarylethane-1,2-diols can be easily prepared via asymmetric
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(E)-1,2-diarylethenes, the effect o
stereochemical outcomes of this reaction can be studied. We then prepared'® the enantiopure diols (R,R)-1b
and (R,R)-1¢ by quinidine mediated asymmetric syn-dihydroxylation of the corresponding p,p’-disubstituted
(E)-I,Z—diarylethenes.‘"'2 The (R,R) absolute configuration was assigned to (+)-1b by comparison of its [ot]p

of the CD spectrum of its 2,2—dimethyl-l,?)-dioxol;:mc.M

Once the ee and the absolute configuration of (R,R)-
{(+)-1b and (R,R)-(+)-1¢ were established with certainty they were tested as chiral ligands in the Ti-catalyzed
asymmetric oxidation of methyl p-tolyl sulfide (2a) and benzyl phenyl sulfide (2b), and the results compared

(Table) with those given by the unsubstituted diol (R,R)-1a.

Table. Enantioselective oxidations employing diols (R,R)-1a-c as ligands®

entry  diol sulfide sulfoxide (%) ee (%) Abs. conf.©
1 1a 2a 62 80¢ S
2 1a 2b 73 99°¢ S
3 1b 2a 60 48¢ S
4 1b 2b 65 92¢ S
5 1c 2a 70 26¢ R
6 1c 2b 80 18° N

« Conditions: sulfide/(R, R)-1/Ti(i-PrO)4/H,0 = 1.0/0.1/0.05/1.0 in CCl, at 0°C under N, atmosphere, reaction time 2 h, 2 equivalents
of 70% TBHP in water as oxidant. * Isolated yields, amount of sulfone < 10%. < Determined by comparison of [a]p with literature
values, see ref. 15 ¢ Determined by HPLC on a Daicel Chiralcel OB column. * Determined by HPLC on a Daicel Chiralcel OJ
column.
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The above results reveal that whilst the chemical yields obtained with the three diols are similar (60—80%),
the presence of a substituent in the para position of
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The higher ee’s with both the sulfides 2a and 2b were in fact obtained with the unsubstituted diol (R,R)-1a
(entries 1 and 2) 2b resulting a particularly good substrate. The presence of a OMe group in para position in

(R,R)-1b led to a decrease in the enantioselectivity of the reaction (entries 3 and 4) especially with 2a which
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afforded a 48% ee. The use of the p-CF; substituted diol (R,R)-1c dramatically decreased the ee (18%)

&

opposite stereochemistry (R) with respect to those obtained with the other diols. In summary, for the series
(R.R)-1a, (R,R)-1b, (R,R)-1¢ we have not only a reduction of the absolute value of the ee but even a reversal

of the asymmetric induction: diols with the same chiral backbone induce different enantioselectivity

depending on their substituents onto the phenyl ring. A detailed mechanistic rationale of this effect cannot be
presently formuiaied, the only possibie comments being as follows: the presence of both the OMe and CF;
group, i.c. coordinating moieties, can lead to the formation of new Ti complexes (different from those

resulting from the interaction between a titanium atom and the unsubstituted ligand (R,R)-1a) having different

strong reduction of ee and the reversal of asymmetric induction observed with the fluorine substituted diol
(R.R)-1c (entries 6 and 5) could be interpreted as determined by a relevant intervention of the second
mechanism (i.e. the mechanism mediated by the species derived from the coordination of the para
substituents to the titanium) which becomes prevailing in the case of worse substrate 2a. The hypothesis of
the intervention of a F-Ti bond which affects the asymmetric induction in this reaction is in keeping with the
observation® of Marson and Melling. In conclusion, we have described herein the first example in which the

introduction of fluorine substituents ont
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a chiral ligand causes a reversal of the enantioselectivity. Although
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the important role of fluorine substituted ligands in asymmetric synthesis.
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